
Nested quantum search and NP-complete problems

Nicolas ,J. Cerf,','t3 Lov K. Grover,4 n11d Coli11 P. Willialns'
' LV. li. Iiellogg Radiation Laboratory, California Institute of Technology, Pnsndenn, L~difornin 91 12.5

' Informcztzon and Computing Technologies Research Section. .Jet Propulsion LaboratorIy. Prrsatlena. C'alifornia 91 109
'Center for Nonl inear Phenomena and Complex Systems, l iniversi te ' Libre de Bruxel les , 1050 Bruxelles, Belyitrrn

43C-404A Bell Laboratories, 600 Mountain Auenue, Murray Hill , New Jersey 07974
(June 1998)

A quantum algorithm is known that solves an unstructured search problem in a number of it-
erations of order &, where d is the dimension of the search space, whereas any classical algorithm
necessarily scales as O(d) . I t is shown here that an improved quantum search algorithm can be
devised that exploits the structure of a tree search problem by nesting this standard search algo-
rithm. The number of iterations required to find the solution of an average instance of a constraint
satisfaction problem scales as 0, with a constant a < 1 depending on the nesting depth and the
problem considered. When applying a single nesting level to a problem with constraints of size 2
such as the graph coloring problem, this constant a is estimated to be around 0.63 for average
instances of maximum difficulty. This corresponds to a square-root speedup over a classical nested
search algorithm, of which our presented algorithm is the quantum counterpart.

PACS numbers: 03.67.Lx, 89.70.+c ' KRL preprint MAP-225

I. INTRODUCTION

Over the past decade there has been steady progress in the development of quantum algorithms. Most attention
has focused on the quantum algorithms for finding the factors of a composite integer [l,2] and for finding an item in
an unsorted database [3,4]. These successes have inspired several researchers to look for quantum algorithms that can
solve other challenging problems, such as decision problems [5] or combinatorial search problems [6], more efficiently
than their classical counterparts.

The class of NP-complete problems includes the most common computational problems encountered in practice [7].
In particular, it includes scheduling, planning, combinatorial optimization, theorem proving, propositional satisfiability
and graph coloring. In addition to their ubiquity, NP-complete problems share a fortuitous kinship: any NP-complete
problem can be mapped into any other NP-complete problem using only polynomial resources [7]. Thus, any quan-
tum algorithm that speeds up the solution of one NP-complete problem immediately leads to equally fast quantum
algorithms for a11 NP-complete problems (up to the polynomial cost of translation). Unfortunately, NP-complete
problems appear to be even harder than the integer factorization problem. Whereas, classically, the best known
algorithm for the latter problem scales only sub-exponentially [8], NP-complete problems are widely believed to be
exponential [7]. Thus, the demonstration that Shor's quantum algorithm [1,2] can factor an integer in a time that is
bounded by a polynomial in the "size" of the integer (;.e., the number of bits needed to represent that integer), while
remarkable, does not lead to a polynomial-time quantum algorithm for NP-complete problems, the existence of which
being considered as highly improbable [9]. Moreover, it has proven to be very difficult to adapt Shor's algorithm to
other computational applications.

By contrast, the unstructured quantum search algorithm [3,4] can be adapted quite readily to the service of solving
NP-complete problems. As a candidate solution to an NP-complete problem can be tested for correctness in polynomial
time, one simply has to create a "database" consisting of all possible candidate solutions and apply the unstructured
quantum search algorithm. Unfortunately, the speedup afforded by this algorithm is only O (f l) where N is the
number of candidate solutions to be tested. For a typical NP-complete problem in which one has to find an assignment
of one of b values to each of p variables, the number of candidate solutions, b p , grows exponentially with p . A classical
algorithm would therefore take a time O (b P) to find the solution whereas the unstructured quantum search algorithm
would take O(bPl2) . Although this is an impressive speedup, one would still like to do better.

While there is now good evidence that for unstructured problems, the quantum search algorithm is optimal [9-11].
these results have raised the question of whether faster quantum search algorithms might be found for problems that
possess structure [6,12-141. It so happens that NP-complete problems have such structure in the sense that one can
often build up complete solutions (i.e., value assignments for all the variables) by extending partialsolutions (i.e., value
assignments for a subset of the variables). Thus, rather than performing an unstructured quantum search amongst all

1

t,he crtntlidnte solut,ions. i n a11 NP-colnpiete proI~I t~I l l l we can perfortu a quantll1n search amongst the p t r r t t c d solutions
i n order to narrow the subsequent quantum senrrh anlongst t,hcir descendants. This is the appr,oacll presented i n this
paper and which allows 11s to find a solution to an NP-conrplete problem i n a time that grows, 0.n average, as O(h“”’)
for the hardest problems, where a < 1 is a constrtnt depending on the problem instance considered.

Our improved quantum search algorithm works by nesting one quantum search wi th in another. Specifically, by
performing a quantum search at a carefully selected level in the tree of partial solutions, we can narrow the effective
quantum search amongst the candidate solutions so that the net computational cost is minimized. The resulting
algorithm is the quantum counterpart of a classical nested search algorithm which scales as O(P’‘), giving a square
root speedup overall. The nested search procedure mentioned here corresponds to a single level of (classical or
quantum) nesting, but it can be extended easi1y.to several nesting levels. Thus, our result suggests a systematic
technique for translating a nested classical search algorithm into a quantum one, giving rise a square-root speedup,
which can be useful to accelerate efficient classical algorithms (rather than a simple exhaustive search, of no practical
use). We believe this technique is applicable in all structured quantum searches.

The outline of the paper is as follows. Section I1 introduces a simple classical tree search algorithm that exploits
problem structure to localize the search for solutions amongst the candidates. This is not intended to be a sophisticated
classical tree search algorithm, but rather is aimed at providing a baseline against which our quantum algorithm can be
compared. In Section 111, we outline the standard unstructured quantum search algorithm [3,4]. We focus especially
on the algorithm based on an arbitrary unitary search operator [15], as this is a key for implementingquantum nesting.
Finally, Section IV describes the quantum tree search algorithm based on nesting, which is a direct quantum analog
of the classical search algorithm appearing in Section 11. The quantum search algorithm with several levels of nesting
is also briefly discussed. We conclude by showing that the expected time to find a solution grows as O(bafi/2), that
is, as the square root of the classical time for problem instances in the hard region. The constant a , depending on
the problem considered, is shown to decrease with an increasing nesting depth (;.e., an increasing number of nesting
levels).

11. NESTED CLASSICAL SEARCH ON STRUCTURED PROBLEMS

A. Structured search in trees

Many hard computational problems, such as propositional satisfiability, graph coloring, scheduling, planning, and
combinatorial optimization, can be regarded as examples of so-called “constraint satisfaction problems”. Constraint
satisfaction problems consist of a set of variables, each having a finite set of domain values, together with a set of logical
relations (or “con~traints~~) amongst the variables that are required to hold simultaneously. A solution is defined by a
complete set of variable/value assignments such that every variable has some value, no variable is assigned conflicting
values, and all the constraints are satisfied.

In such constraint satisfaction problems, there is often a degree of commonality between different non-solutions.
One typically finds, for example, that certain combinations of assignments of values to a subset of the variables are
inconsistent (;.e., violate one or more of the constraints) and cannot, therefore, participate in any solution. These
commonalities (several non-solutions sharing the same ancestor that is inconsistent) can be exploited to focus the
search for a solution. Thus, a classical structured search algorithm can find a solution to a constraint satisfaction
problem in fewer steps than that required by a unstructured search by avoiding regions of the search space that
can be guaranteed to be devoid of solutions. Before investigating whether the problem structure can be exploited
in a quantum search (see Sec. IV), we need to understand the circumstances under which knowledge of problem
structure h a s the potential to be useful, classically. The key idea is that one can obtain complete solutions to a
constraint satisfaction problem by systematically extending partial solutions, i.e. variable/value assignments that
apply only to a subset of the variables in the problem. Not all partial solutions are equally desirable however. A
partial solution is “good” if it is consistent with all the constraints against which it may be tested. Conversely a
partial solution is “nogood” if it violates one or more such constraints. Sophisticated search algorithms work by
incrementally extending good partial solutions and systematically terminating nogood partial solutions. This induces
a natural tree-like structure on the search space of partial solutions.

2

[.'I(; . L . ('m1st.raint satisfaction prot)Ierr~ ill which we must find arl assignment to the p variables 1 ' 1 , . C L , . ' X , , . :\s it11 example,
we pict,Ilre t , h e g m p h colortng prohlerrr. in which we have to assign one of h possible colors to each node of a grnk)ll so that every
pair of nodes that are connected directly have different colors;' The corresponding search tree is characterized by a depth p
ancl n branching ratio 6. By looking a t partial solutions a t level I i n the tree (the search space being of size h ') and considering
ordy the clescenclants a t level 11 of these partial solutions, one avoids having to search through the entire space at the bottom
of the tree (of size h").

To give a concrete example of a tree search problem, we consider the graph coloring problem as pictured in Fig. 1.
We have a graph that consists of p nodes connected by e edges, with 0 5 e 5 p (p - 1)/2. Each node must be assigned
a color (out of b possible colors), so that any two nodes connected by an edge have different colors. More generally,
for a constraint satisfaction problem, we are given a set of p variables (2 1 , . . . , z,,) to which we must assign a value
out of b possible values. This assignment must satisfy simultaneously a set of constraints, each involving k variables.
The resulting number of nogood ground instances (roughly proportional to the number of constraints) is denoted by
(. In the particular case of the graph coloring problem, the size of the constraints k = 2 since each edge imposes a
constraint on the colors assigned to the pair of nodes it connects. The number of nogood ground instances < = eb
because each edge contributes exactly b nogoods and there are a total of e edges (for each edge, b pairs of identical
colors are forbidden).

The search tree corresponding to this constraint satisfaction problem is also shown in Fig. 1. The i-th level of the
search tree enumerates all possible partial solutions involving a specific subset of i , out of the total p , variables. The
branching ratio in this tree, i.e. the number of children per node, is equal to b , the number of domain values of a
variable. For a hard instance of the problem, the number of steps required to find a good assignment at the bottom of
the tree (or decide that there is no possible assignment satisfying all the constraints) scales as b p , i.e., of the order of
the entire space of candidate solutions must be explored. Remarkably, many of the properties of search trees can be
understood without precise knowledge of the constraints. Specifically, it has been found empirically that the difficulty
of solving a particular instance of a constraint satisfaction problem can be approximately specified by four parameters:
the number of variables, p , the number of values per variable, b, the number of variables per constraint, k , and the
total number of assignments of the individual constraints that are nogood, < [16-181.

Clearly, if < is small, there are generally many solutions satisfying the few constraints, so that the problem is easy
to solve. Conversely, if (is large, the problem is in general overconstrained, and it is easy to find that it admits no
solution. The problem is maximally hard in an intermediate range of values for (. In an effort to understand the
observed variation in difficulty across different instances of NP-complete problems for fixed p and b, it has been shown
that the cost of finding a solution (or proving none exists) depends essentially on the parameter

P = < / P , (1)

which characterizes the average number of constraints per variable [16,19,20]. Specifically, the problem solving dif-
ficulty exhibits a ubiquitous easy-hard-easy pattern, with the most difficult problem instances clustered around a
critical value of /3 given, approximately, by

PC = bk log(b) (2)

assuming bk >> 1 for simplicity. This phenomenon, akin to a phase transition in physical systems [19,20], persists
across many different sophisticated algorithms. The average case complexity for a fixed ,B is therefore believed to be
a more informative measure of computational complexity than either worst case or average case complexity.' It is

'The motivation for investigating the complexity of NP-complete problems in term of ,B is that worst case analyses can be
misleading because they tend to focus on atypical problem instances. Similarly, average case analyses can be misleading because
they are sensitive to the choice of the ensemble of problem instances over which the average is computed. Such an ensemble
may contain for example an exceedingly large number of easy instances.

the measure t,hat we will use i n the rest of this paper for estimating t,he scaling of t,he cortlplesit,y of our imI)roved
quantum sc;trch algorithnl (a s well as the corresponding classical search algorithm).

B. Average corr~putational complexity of a classical algorithm1

Let us describe a simple classical algorithm for a tree search problem that exploits the structure of the problem
by use of nesting. As pictured in Fig. 1, the key idea is to perform a preliminary search through a space of partial
solutions in order to avoid a search through the entire space at the bottom of the tree. By definition, a partial solution
at level i in the tree assigns values to a subset of i so-called primary variables (t l , . ' . , t i) , which we denote as A .
The subset of secondary variables (z i+l , . . . , tp), denoted as B , corresponds to the variables to which we assign a
value only when extending the partial solutions (i.e., when considering the descendants of the partial solutions). In
general, any partial solution can be tested against a part of the constraints, namely just those constraints involving
the primary variables A . A partial solution that satisfies all these (testable) constraints can be viewed as a could-be
solution in the sense that all solutions at the bottom of the tree (at level p) must be descendants of could-be's. A
classical search can be speeded up by terminating search along paths that are not descendants of a could-be, thereby
avoiding to search through the entire space. The following algorithm can be used:

Find a could-be solution at level i in the tree. For this purpose, choose repeatedly a random partial solution at
level i , until it satisfies the testable constraints.

0 For each could-be solution, check exhaustively (or by use of a random search) all its descendants at the bottom
of the tree (level p) for the presence of a possible solution.

This is clearly not a sophisticated algorithm. It amounts to nesting the search for a successful descendant at level p
into the search for a could-be a t level i. Nevertheless, it does exploit the problem structure by using the knowledge
gleaned from the search at level i to focus the search a t level p . By finding a quantum analog of this algorithm (cf.
Sec. IV), we will, therefore, be able to address the impact of problem structure on quantum search.

Let us estimate the expected cost of running this algorithm. This cost consists essentially of three components: n,
the cost of finding a consistent partial solution (a could-be) at level i in the tree, m, the cost of the subsequent search
among its descendants at level p , and T , the number of repetitions of this whole procedure before finding a solution.
The search space for partial solutions (assignment of the primary variables A) is of size d A = b'. Assuming that there
are n A could-be solutions a t level i (i.e., partial solutions that can lead to a solution), the probability of finding one
of them by using a random search is thus n A / d A . Thus, one needs of the order of

n = d A / n A (3)

iterations to find one could-be solution. The descendants of a could-be are obtained by assigning a value to the subset
of secondary variables B , of size d B = b p - i (each could-be has d B descendants). Thus, searching through the entire
space of descendants of a could-be requires on average

m = d B (4)

iterations. If the problem admits a single solution, this whole procedure needs to be repeated n A times, on average,
since we have n A could-be solutions. More generally, if the number of solutions of the problem is given by n A B , this
procedure must only be repeated

7' = n A / n A B (5)

times in order to find a solution with a probability of order 1. Thus, the total number of iterations required to find a
solution of an average instance is approximately equal to

This corresponds to an improvement over a naive unstructuredsearch algorithm. Indeed, the cost of a naive algorithm
that does not exploit structure is simply d A B / n A B , where AB = d A d B = b'' is the dimension of the total search
space.

4

‘Tht: first term in t,he nunlerator of Eq. (6) corresponds to the search for could-be solutious i n a space of partial
solutions of size c f ~ (shatled area at level i in Fig. l) , while the second term corresponds to the search f o r actual
solutions among all the descendants of the nA could-be solutions, each of them having d~ descendants (shaded area
at level p in Fig. 1). ‘The denominator in Eq. (6) accounts for a problem admitting more than one solution. We
w i l l see i n Sec. I V that the quantum counterpart of Eq. (6) involves taking the square root of 11 , m , and I - , which
essentially results in quantum-mechanical square-root speedup over this classical algorithm.

TO make the estimate of this classical average-case complexity more quantitative, let p (i) be the probability that a
partial solution at level i is “good” (i.e., that it satisfies all the testable constraints). In Appendix A , we provide an
asymptotic estimate of p (i) for an average instance of a large problem (p + 0 0) with a fixed value of the parameter
P . Recall that, if we want to preserve the difficulty while considering the limit of large problems, must be kept
constant. This is necessary for the complexity measure that we consider in this paper, as mentioned before. Thus,
by making use of this asymptotic estimate of p (i) , we can approximate the expected number of could-be solutions at
the ith level, nA = p (i) b ’ , and the expected number of solution at the bottom of the tree, n A B = p (p) b p . Therefore,
the average search time of the classical algorithm to find the first solution is approximately equal to

b’ + p (i) b!” T,(i) =
P (P P

This is essentially the cost for finding one solution (which basically requires checking all the partial solutions for a
could-be, and subsequently checking the descendants of all these could-be solutions) divided by the expected number
of solutions.2

Equation (7) yields an approximate cost measure for our classical nested search algorithm as a function of the level
of the “cut”, i . An important question now is where to cut the search tree? If one cuts the tree too high (searching
for could-be solutions at small i) , one is unlikely to learn anything useful as most partial solutions will probably be
(‘goods’’, allowing for little discrimination between solutions and non-solutions. In other words, the second term in
the numerator of Eq. (7) dominates since p (i) is close to 1, i.e., there are many could-be solutions at level i . Searching
for could-be solutions is thus fast (the space of primary variables is of size b’ only), but those partial solutions are of
little use for singling out the actual solutions. The cost of the search among the descendants of those partial solutions
is then high. Conversely, if one cuts the tree too deep (searching for could-be solutions at large i) , although this
would enhance discrimination between solutions and non-solutions, the search space for the primary variables would
be almost as large as the entire space. Then, the first term dominates the scaling as the search for could-be solutions
becomes time-consuming. It is therefore apparent that, for a typical problem instance, there ought to be an optimal
level at which to cut.

We can estimate the optimal level by finding the value of i that minimizes the classical computation time T,(i) for
a given value of p , b , <, and k , using the functional form for p (i) . This is done in Appendix B, where we estimate
the asymptotic behavior of the location of the optimal cut level as a function of p , as larger problems are considered
(p + cm). We then calculate the corresponding asymptotic scaling of T, for large problems. The result is that the
computation cost of running the classical nested search algorithm scales as

T, 21 bap (8)

for a search space of dimension d = b p , where o < 1 is a constant depending on the problem considered. (More
generally, this constant also depends on the number of nesting levels, but we have considered a single level of nesting in
this Section.) As we will see, the structured quantum search algorithm that we present in Sect. IV has a computational
cost of order of f i , in agreement with the idea that a square root speedup is the best that can be achieved by
quantum mechanics. The focus of this paper, however, is to show explicitly how a quantum algorithm can be
implemented that reaches this maximum speedup over the classical algorithm discussed above. Interestingly enough,
the quantum complexity of our nested algorithm scales then as a power of the dimension of the search space d = b p

that is less than 1/2. Structured quantum search therefore offers a significant speedup over both structured classical
search and unstructured quantum search.

2The denominator of Eq. (7) is the number of solutions at the bottom of the tree. For a problem of maximum difficulty
(p = P C) , it is shown in Appendix A that p (p) = b - p , i.e., the problem admits a single solution on average.

111. UNSTRUCTURED QUANTUM SEARCH

Let US first review the standard unstr.uctuI.edquantun1 searrh algorithm [3,4]. Consider a Hilbert space of dimension
d i n which each basis 1.) state (x = 1, . . . d) corresponds to a candidate solution of a search problem. Any search
problem can be recast as the problem of finding the value(s) of x at which an “oracle” function f (x) is eclual to one
(this function being zero elsewhere). We start the quantum search process from an arbitrary basis state Is), and the
goal is to reach a solution (or target) basis state It), with f (t) = 1, in a shortest computation time. More precisely,
if there is a single solution (or target state), the goal is to reach a state that has an amplitude of order 1 in It), so
that a measurement of this state gives the solution with probability of order 1 . (If there are T solutions, the goal is
to reach a superposition of the states It), each with an amplitude of order T - ’ / ? .)

The quantum search algorithm we discuss below is in fact an immediate extension of the original one [3,4], where
an arbitrary unitary transformation is used instead of the Walsh-Hadamard transformation [15]. Assume that we
have at our disposal a quantum circuit that performs a particular unitary operation U . If this operation connects
the starting state Is) to the target state It), i.e., (t lUls) # 0, then this operation can be used classically to find the
target. Indeed, if we measure the system after applying U , the probability of obtaining the solution It) is obviously
I(tlUls)12. Thus, on average, we need to repeat this experiment I (t l U l ~) l - ~ times to find the solution with probability
of order 1. We will show now that, using a quantum algorithm, it is possible to reach the target state It) in a number
of steps of order ~ (~ ~ U ~ S) ~ - ~ only, which represents a huge speedup provided that I(tlUls)l << 1 (this corresponds to
the situation of interest where the search space is very large).

The idea behind a quantum search algorithm is to postpone the measurement, and keep a superposition of quantum
states throughout the algorithm. Only at the end, a measurement is performed. Let us define the unitary operation

Q = -uI,utIt = -u e i r p , Ut e i rp t (9)

where P, = Is)(sl and Pt = It)(tl are projection operators on Is) and It), respectively. The two unitary operators
I , = 1 - 2P, and It = ll - 2Pt perform a controlled-phase operation: applying I , (or I t) on a state 1 1) flips its phase
if I = s (or I = t) , and leaves it unchanged otherwise. Note that the target state It) is of course not available (it
is what we are searching for). Instead, we have at our disposal the quantum circuit (or “oracle”) that computes the
function f (+) , and we can use it to implement the circuit for I t . Thus, we have I t lz) = (- l) f (z) l ~) for all state 1 1) .
The circuit for I , does not require the function f (x) and is trivial. The principle at the heart of quantum search is
to apply the operation Q repeatedly in order to amplify the target component It), starting from VIS). This quantum
amplitude amplification [21] can be understood by noting that, after applying U to the starting state Is), the repeated
applications of Q essentially rotate this state into the target state It) at an angular velocity that is linear in the
number of iterations. More specifically, using Q = -1 + 21t)(t/ + 2Uls)(slUt - 4Uls)(slUtlt)(tl, we can see that Q
preserves the two-dimensional subspace spanned by VIS) and It), namely

Therefore, in the case where I(tlUls)l << 1, the states VIS) and It) are almost orthogonal, and Q tends to a rotation
matrix of angle 2l(tlUIs)I << 1. Indeed, keeping only the first-order terms in u E (tlUls), we obtain

We can then easily approximate the operation of Q” in the subspace spanned by VIS) and It):

implying that the amplitude of the target state It) after n iterations is

6

(1 3)

These last expressions are only asymptotically valid, at the limit of small 1 u 1 . The exact expressions for Eqs. (12) and
(1 3) in terms of Chehyshev polynomials can be found in .Appendix C.

Consider first the case of a snlall rotation angle. From Eq. (I n) , we see that if we iterate the application of Q on
Uls) , the amplitude of I t) grows linearly with the number of iterations R provided that the total angle 2nlul << 1:

(tlQ"U1s) 2: (1 + 2 n) (t lUls) (14)

Consequently, if we measure the system after n iterations, the probability p (n) of finding the solution grows quadrat-
ically with n , as p (n) - n21(tlUIs)I2. This is a great improvement compared to the linear scaling of the classical
algorithm consisting in repeating R times the measurement of Vis) , namely p (n) - nl(tlUls)l'. This is the quadratic
amplification effect provided by quantum mechanics.

Now, consider the goal of reaching the target state It) using this operator Q. From Eq. (12) we see that, starting
from the state U (s) , we need to apply Q until we have rotated it by an angle of about 7r/2 in order to reach It). At
this time only, one measures the system and gets the desired solution with a probability of order 1. The number of
iterations required to rotate VIS) into the solution It) is thus

and scales as the square root of the classical time. It is worth noting that the amplitude of any state Ix) orthogonal
to the target It) is given by

(zIQ"Uls) z cos(2nlul) (x lUls) (16)

so that (rlQ"U(s) z (z lU(s) for small angles. Thus, the amplitude of non-solutions is not amplified by applying Q
repeatedly, so that the quantum search algorithm selectively amplifies the solutions only.

Thus, we have described here a general technique for achieving a quantum-mechanical square-root speedup of a
search algorithm relying on any unitary transformation U [15]. The quantum search algorithm can be simply viewed
as a rotation from VIS) to It) based on the repeated operation of Q , followed by a measurement. In the above
discussion, the search operator U can be arbitrary, provided it connects Is) and It). In the case of an unstructured
search problem, as we have no a priori knowledge about where the solution is located, the most natural choice for U
is the Walsh-Hadamard transformation H [3,4]:

where ii?.g = Ciz0 ciyi(mod 2), with xi (yi) being the binary digits of x (Y) . ~ Indeed, U = H does not bias the search
towards a particular candidate solution since His) has the same (squared) amplitude in all the candidate solutions,
so that the search starts from a uniform distribution of all states. Applying U = H to an arbitrary state Is), we see
that

d - 1

(t lHIs) = *l/& (18)

for all possible target state It). Thus, according to Eq. (15), the number of iterations in the quantum search algorithm
relying on H is O(&) [3,4], whereas a classical search algorithm obviously requires O (d) steps. When there are
multiple target states (the problem admits several solutions), it can be shown that the quantum computation time
becomes O (m) , where P is the number of solutions [lo]. The classical counterpart is then simply O (d / r) .

For a structured search problem, however, it is natural to use the knowledge of the structure in order to choose a
better U . Indeed, if we have partial knowledge about where the solutions are, we can exploit it to bias the search in
such a way that VIS) has larger amplitudes in states which are more probable to be solutions. This is the focus of
the present paper. It has been shown recently that an arbitrary (non-uniform) initial amplitude distribution can be

3Here and below, we assume that d is a power of 2 for simplicity.

7

useti as well w i th the stmclnrd quantum search algorithtn, resulting i n a O(m) qua11tunl co1nputnt.ion t.itne [22].
‘This seems to indicate that the scaling remains in O(J ; s) even i f we use our knowledge about the problem by biasing
the initial distribution. I n contrast, we will show i n Sec. IV that the use of a nested quantum search algorithm
can result i n a power law in d with an exponent that is smaller. than 1/2. The key idea is that l r is not fixed D

prtori, but is rather obtained “dynamically” by the quantum algorithm itself, depending on the particular instance.
In short, the standard search algorithm is used to construct an effective search operator I ; (or a non-uniform initial
distribution) which, itself, is nested within another quantum search algorithm. In other words, we apply quantum
search “recursively”: the operator (- H I , H I t) ” H resulting from the nested search algorithm based on H is used as a
better search operator U for a quantum search at an upper level of hierarchy.

IV. NESTED QUANTUM SEARCH ON STRUCTURED PROBLEMS

A. The core quantum algorithm

Assume that the Hilbert space of our search problem is the tensor product of two Hilbert spaces X f l ~ and X B . As
before, A denotes the set of primary variables, that is, the variables to which we assign a value in the first stage.
The partial solutions correspond to definite values for these variables. Thus, % A represents the search space for
partial solutions (of dimension d A) . The set of secondary variables, characterizing the extensions of partial solutions,
is denoted by B , and the corresponding Hilbert space X B is of dimension d e . Let us briefly describe the quantum
algorithm with a single nesting level (the counterpart of the classical algorithm of Sect. 11):

0 The first stage (i) consists in constructing a superposition (with equal amplitudes) of all the could-be solutions
a t level i by use of the standard unstructured search algorithm based on H .

0 Then (ii) , one performs a subsequent quantum search in the subspace of the descendants of all the could-be
partial solutions, simultaneously. This second stage is achieved by using the standard quantum search algorithm
with, as an input, the superposition of could-be solutions resulting from the first stage. The overall yield of
stages (i) and (ii) is a superposition of all states where the solutions have been partially amplified with respect
to non-solutions.

0 The final procedure (iii) consists of nesting stages (i) and (ii)- using them as a search operator U-inside a
higher-level quantum search algorithm until the solutions get maximally amplified, at which point a measurement
is performed. This is summarized in Fig. 2.

FIG. 2. Schematic representation of stages (i) and (ii) of the quantum algorithm. These stages partially amplify the solution
states, and can be nested into a standard quantum search algorithm (ii i) in order to speedup the amplification of the solutions.

Let us now follow in more details the evolution of the quantum state by applying this quantum nested algorithm,
and estimate the number of iterations required. The starting state of the search is denoted as Is, s’), where Is) (lying
in X A) and Is’) (lying in X B) are just the initial state of two different parts of the same, single, quantum register
which is large enough to hold all the potential solutions in the total search space (i.e.. all the U‘ leaf nodes of the
search tree at level p) . Register A stores the starting state at an intermediate level i in the tree, while register B
stores the continuation of that state at level p . In other words, A holds partial solutions and B their elaboration in
the leaves of the tree.

(i) The first stage of the algorithm consist in a standard quantum search for could-be partial solutions I C) at level i ,
that is, states in subspace X A that do not violate any (testable) constraint. We start from state Is) in subspace ‘ H A ,

8

we can perform an amplification of the components I C) based on Q = - H I , H I c where

The states I C) correspond to the could-be partial solutions in ‘HA (assignment of the primary variables that could lead
to a solution), and belong to the subset C = {cl , . . . , cn,}. We assume that there are nA could-be partial solutions,
with 1 << nA << d A . The quadratic amplification of these could-be solutions, starting from Is), is reflected by

(c1Q”Hls) E R (clHls) 2: n/& (22)

for small rotation angle. Thus, applying Q sequentially, we can construct a superposition of all the could-be solutions
IC), each with an amplitude of order - 1/&. The required number of iterations of Q scales as

This amplitude amplification process can equivalently be described in the joint Hilbert space ‘ H A 8 ‘ H E , starting from
the product state Is, s’), where Is’) denotes an arbitrary starting state in ‘ H E , and applying (Q 8 1) sequentially:

(c, .’I(& 8 1)”(H 8 n)ls, s’) = (clQnHls) - n/& (24)

Here and below, we use the convention that the left (right) term in a tensor product refers to subspace A (B) .

(ii) The second stage of the algorithm is a standard quantum search for the secondary variables B in the subspace
of the “descendants” of the could-be solutions that have been singled out in stage (i). As before, we can use the search
operator H that connects extended could-be solutions I C , s’) to the actual solutions or target states It, t’) in the joint
Hilbert space:

Note that, this matrix element is non-vanishing only for could-be states I C) that lead to an actual solution. Define
the operator R = -(1 @ H I , ! H) I t , with

where T is the set of solutions It,t’) at the bottom of the tree, and # (T) = R A E , i.e., the problem admits RAE

solutions. We can apply the operator R sequentially in order to amplify a target state It, t’), namely

for small rotation angle. Note that, for a could-be state I C) that does not lead to a solution (c # t) , we have
I t I c , z) = Ic,z) for all z, so that R m (l 8 H)lc,s’) = (-1 8 Hl , !H)”(n 8 H) ~ C , S ’) = (1 8 H)~C,S’), and the matrix
element is not amplified by m compared to the case c = t . In other words, no amplification occurs in the space of
descendants of could-be partial solutions that do not lead to an actual solution. Thus, Eq. (28) results in

9

I71 2 (30)

tinles i n order to maximally amplify each solution. We then obtain a superposition of the solution stat,es I t , l ') , each
w i t h an amplitude - l/&. This can also be seen by conlhining Eqs. (24) and (' L C)) , and using the resolution of
identity fl = Cc,y I C , y) (c , yl:

(t , t ' ~ ~ ~ (n B H) (Q n)"(H 8 n) IS , s') = x(t3 ~ ' I R " (u o H) ~ x , Y) (X, Y I (Q B n)"(H 3 n) b , s')
+ 4

U J>?4

= (2 , t'lRm(n @ ~) l t , S I) (t , @ n y (H o n)ls, S I)

= (m / &) (n / A)
I/& (31)

Thus, applying the operator Q" followed by the operator R" connects the starting state Is, s') to each of the solutions
It,t') of the problem with a matrix element of order - 1/&.

(iii) The third stage consists in using the operator U 3 Rm(n @ H) (Q @ f l) " (H @ 1) resulting from steps (i) and (ii)
as a search operator for a higher-level quantum search algorithm, in order to further amplify the superposition of
nAB target (or solution) states It, t'). The goal is thus to construct such a superposition where each solution has an
amplitude of order - 1/*. As before, we can make use of the operator S = -U(Is 8 Isj)UtIt where I,, I,,, and
It are defined in Eqs. (20), (26), and (27), in order to perform amplification according to the relation

(t , t ' [S U (s , s') N r (t , t ' (U(s , s') N r/& (32)

for small rotation angle. The number of iterations of S required to maximally amplify the solutions is thus of the
order of

This completes the algorithm. At this point, it is sufficient to perform a measurement of the amplified superposition
of solutions. This yields one solution It, t ') with a probability of order 1.

FIG. 3. Circuit implementing the nested quantum search algorithm (with a single level of nesting). The upper set of quantum
variables, initially in state Is), corresponds to the primary variables A . The lower set of quantum variables, initially in states
Is'), is associated with the secondary variables B. The quantum circuit makes use of controlled-phase gates I , = exp(irls)(sl),
I,! = exp(ir1s1)(s'1), I , = e x p (i r x c E c Ic)(cl), and I t = exp(i r&t , t ,)ET l t , t ') (t , t ' l) , and Walsh-Hadamard gates H . The
entire operation of U (exhibited inside the dashed box) is repeated F times. Note that U" = U t corresponds to same the
circuit as U but read from right to left.

U U- ' U r"""""""""""""""""""""""""""""""". r - - - - - - ,
I n iterations I I I I I

c - - - - - - ,
I I I I I I
I / \ I I

I I I I

I""". I - - - - - -. I \ 1 ; I I I I
I rn itmations I I I I I
I"""""""""""""""""""""""""""""""""

r iteraticar

In Fig. 3, the quantum network that implements this nested quantum search algorithm is illustrated. Clearly, a
sequence of two quantum search circuits (a search in the A space followed by a search in the B space) is nested
into a global search circuit in the whole Hilbert space X A B . This can be interpreted as a "dynamical" choice of the
search operator U that is used in the global quantum search. This quantum nesting is distinct from a procedure
where one would try to choose an optimum U before running the quantum search by making use of the structure
classically (making several classical queries to the oracle) in order to speedup the resulting quantum search. Here, no
measurement is involved and structure is used at the quantum level.

10

B. Qllantuln avorage-case complexity

Let us estimate the total number of iterations, or more precisely the number of times that a controlled-phase
operator (f t , which flips the phase of a solution, or I,, which flips the phase of a could-be partial solution) is used.
Since we need to repeat I’ times the operation S , which itself requires applying n times Q and m times R, we obtain
for the quantum computation time

This expression is the quantum counterpart of Eq. (6), and h a s the following interpretation. The first term in the
numerator corresponds to a quantum search for the could-be partial solutions in space of size d A . The second term is
associated with a quantum search of actual solutions in the space of all the descendants of the R A could-be solutions
(each of them has a subspace of descendants of size d ~) . The denominator accounts for the fact that the total number
of iterations decreases with the square root of the number of solutions of the problem R A E , as in the standard quantum
search algorithm.

Let us now estimate the scaling of the computation time required by this quantum nested algorithm for a large
search space (p + a). Remember that p is the number of variables (number of nodes for the graph coloring problem)
and b is the number of values (colors) per variable. As before, if we “cut” the tree at level i (;.e., assigning a value
to i variables out of p defines a partial solution), we have dA = b’ and d B = b”-’. Also, we have nA = p(i)b’, and

= p(p)b”, where p (i) is the probability of having a partial solution at level i that is “good” in a tree of height
p . (The quantity p (p) is thus the probability of having a solution in the total search space.) We can reexpress the
computation time as a function of i ,

which is the quantum counterpart of Eq. (7). In order to determine the scaling of Tq, we use the asymptotic estimate
of p (i) that is derived in Appendix A, namely

Eq. (36) is a good approximation of p (i) in the asymptotic regime, i.e., when the dimension of the problem p (or the
number of variables) tends to infinity. Remember that, in order keep the difficulty constant when increasing the size
of the problem, we need to choose the number of constraints [= ,Bp when p + a.* The constant P corresponds
to the average number of constraints per variable, and is a measure of the difficulty of the problem. The difficulty
is maximum when /3 is close to a critical value PC = bk log(b), where k is the size of the constraint (i.e., number of
variables involved in a constraint). Note that p (p) = b-”(p/pc), implying that the number of solutions at the bottom
of the tree is n(p) = b”(l-P/Pc). Thus, if /3 N PC, we have p (p) b-p, so that the problem admits of the order of
n (p) 2 1 solutions. This corresponds indeed to the hardest case, where one is searching for a single solution in the
entire search space. When ,Ll < PC, however, there are less constraints and the problem admits more than one solution,
on average. If P > PC, the problem is overconstrained, and it typically becomes easier to check the nonexistence of a
solution.

Now, plugging Eq. (36) into Eq. (35), we obtain for the quantum computation time

Defining the reduced level on the tree as x = i / p , i.e., the fraction of the height of the tree at which we exploit the
structure of the problem, we have

4For the graph coloring problem, since E = eb (where e being the number of edges and b the number of colors), it implies
that the number of edges must grow linearly with the number of nodes for a fixed number of colors in order to preserve the
difficulty. In other words, the average connectivity must remain constant.

11

where (1 g a. Now, we want to find the value of c that minimizes the computation time & (e) , so we have to solve

For large p (or large a) , this equation asymptotically reduces to

(P / P C) x k + x - 1 = 0 (40)

The solution x (with 0 5 x 5 1) corresponds therefore to the reduced level for which Tq(x) grows asymptotically
(p + m) with the smallest power in b. Note that this optimum x is such that both terms in the numerator of Eq. (3 i)
grow with the same power in b (for large p) . This reflects that there is a particular fraction t of the height of the tree
where it is optimal to "cut", i.e., to look at partial solutions. The optimum computation time can then be written as

where the constant a < 1 is defined as the solution x of Eq. (40).' Note that, for a search with several levels of
nesting, the constant a < x , as we shall see in Sect. IVC.

Equation (41) implies that the scaling of the quantum search in a space of dimension d = b p is essentially O(d"I2)
modulo the denominator (which simply accounts for the number of solutions). In contrast, the standard unstructured
quantum search algorithm applied to this problem corresponds to a = x = 1, with a computation time scaling as
Tq(a = 1) = O(d ' I2) . This means that exploiting the structure in the quantum algorithm results in a decrease of
the power in b by a coefficient a: the power 112 of the standard quantum search is reduced to a 1 2 for this nested
quantum search algorithm. Consider this result at /3 = PC, i.e., when the difficulty of the problem is maximum for a
given size p . This is the most interesting case since when ,B < P C , the problem becomes easier to solve classically. For
P = P C , the nested algorithm essentially scales as

Tq 2: daI2 = fi (42)

where a = x < 1 with x being the solution of x k + x - 1 = 0, and d = bp is the dimension of the search space.
This represents a significant improvement over the scaling of the unstructured quantum search algorithm, O(d1l2).
Nevertheless, it must be emphasized that the speedup with respect to the computation time O(da) of the classical
nested algorithm presented in Section I1 is exactly a square root (cf. Appendix B). This implies that this nested
quantum search algorithm is the optimum quantum version of this particular classical non-deterministic algorithm.

For the graph coloring problem (k = 2) , we must solve the linear equation of second order x 2 + x - 1 = 0, whose
solution is simply x = (-1 + &)/2 = 0.6180. (When IC > 2 , the solution for x increases, and tends to 1 for large k .)
This means that the level on the tree where it is optimal to use the structure is at about 62% of the total height of
the tree, i.e., when assigning values to about 62% of the p variables. In this case, the computation time of the nested
algorithm scales as O(d0.31), which is clearly an important computational gain compared to O(do,').

Consider the regime where ,f3 < P C , i.e., there are fewer constraints and therefore more than one solution on average,
so that the problem becomes easier to solve. For a given t , the solution x of Eq. (40) increases when P decreases, and
tends asymptotically to 1 for ,B + 0. This means that we recover the unstructured quantum search algorithm in the
limit where ,B + 0. The denominator in Eq. (41) increases, and it is easy to check that the computation time

decreases when P decreases. As expected, the computation time of the nested algorithm approaches O (a) as /3
tends to 0 (or x + l), that is, it reduces to the time of the standard unstructured quantum search algorithm at the
limit p -+ 0.

'We may ignore the prefactor 2 as it only yields an additive constant in the logarithm of the computation time.

12

C . Quantum search with several levels of rlestilrg

The quantum algorithm described in Sect. IV A relies on a single level of nesting. Indeed, the search at the bottom
of the tree (level 1 4) is speeded up by making use of a search at level i which determines the partial solutions which
are “good”. Only the candidate solutions which are descendants of these partial solutions are examined i n the search
at level p . It should be realized that these “good” partial solutions at level i are selected, themselves, by a naive
search: stage (i) indeed amounts to use the standard unstructured search based on I f . In the corresponding classical
nested algorithm, this amounts to select a random partial solution at level i and check whether it is good.

It is natural that both the classical and the quantum algorithms could be improved further if the search for good
partial solutions at level i itself was made faster by making use of the structure of the upper part of the tree (by
examining partial solutions a t level j, with j < i , and considering only the descendants of the “good” ones). This
leads to the notion of a search with several levels of nesting (i.e., a nesting depth larger than one).

In order to analyze the scaling achieved by several levels of nesting, let us consider a search at level i which
corresponds to the n-th nesting level. We suppose that this search relies itself on a search a t level j , where j < i < p ,
which corresponds therefore to the n + 1-th nesting level. Let i = xnp and j = x , + l p , where E , and zn+1 denote the
reduced level on the tree at the n-th and n + 1-th nesting level, respectively. Assume that the quantum computation
cost a t level j is given by

where an+1 is the scaling coefficient at the n + 1-th level of nesting (level j in the tree). Using the structure at level
j, the quantum computation cost at level i can be written as

By optimizing j so that t (i) is minimum, as before, we obtain j = x , + l p , where z,+1 is a solution of

with 0 5 x,+1 5 1. Defining the scaling coefficient an by

we see that the corresponding computation cost at level i is given by

Thus, to determine the cost of the global algorithm, we need to solve the set of recurrence equations (46)-(47) for
n = 0,1 , . . . , N - 1, where N is the nesting depth (N = 1 corresponds to the algorithm described in Sect. IV A). The
boundary conditions are x0 = 1 (the upper level is a search for solutions at the bottom of the tree, i.e., at level p) and
LYN = 1 (the innermost search at the N-th level of nesting is supposed to be a naive search). These two conditions,
together with the 2 N recurrence relations, uniquely determine the variables (20, z1,. . . z ~) and (c t o , 0 1 , . . . , c t ~) . The
overall scaling of the quantum search algorithm is O(-), i.e., it is governed by a0 (the constant that was denoted
as ct in the previous Sections). Note that this entire calculation is also valid for a classical nested search with several
levels of nesting, except for the square root. Thus, the speedup of the multi-nested quantum search algorithm remains
a square root if compared with the corresponding multi-nested classical search algorithm.

We show in Table I the values of the 2,’s and an’s for an average instance of maximum difficulty (P = P C) of the
graph coloring problem (k = 2). The scaling coefficient Q O decreases with an increasing nesting depth N , implying
that the speedup over an unstructured search improves by adding further nesting levels. It should be emphasized,
however, that the formalism used to estimate the scaling throughout this paper cannot be used for a large nesting
depth N . Indeed, the derivation of p (i) essentially neglects the correlations between partial solutions at any level in
the tree which arise because of their sharing a same ancestor. Thus, our cost estimate for the multi-nested algorithm
is only valid provided that N << p (the fact that a0 + 0 when N + 00 is meaningless).

13

V. CONCLUSION

There is considerable interest in the possibility of using quantum computers to speedup the solution of NP-complete
problems given the importance of these problems in complexity theory and their ubiquity amongst practical compu-
tational applications. This paper presents an attempt in this direction by showing that nesting the standard quantum
search algorithm results in a faster quantum algorithm for structured search problems such as the constraint satis-
faction problem than heretofore known. The key innovation is to cast the construction of solutions of the problem
as a quantum search through a tree of partial solutions, which narrows a subsequent quantum search at the next
level in the search tree. The corresponding computation time scales exponentially, but with a reduced coefficient that
depends on the number of nesting levels and on the problem. The speedup that is achieved is a square root over the
computation time of a corresponding classical nested search algorithm, which represents therefore the appropriate
benchmark. Nevertheless, it is an exponential improvement with respect to the time needed to solve the problem by
use of the standard unstructured quantum search algorithm.

ACKNOWLEDGMENTS

NJC is supported in part by the NSF under Grant Nos. PHY 94-12818 and PHY 94-20470, and by a grant from
DARPA/ARO through the QUIC Program (#DAAH04-96-1-3086). CPW is supported by the NASA/JPL Center for
Integrated Space Microsystems (grant 277-3ROUO-0) and NASA Advanced Concepts (grant 233-ONM71-0). NJC is
Collaborateur scientijique of the Belgian National Fund for Scientific Research.

NI Xn a n I x1 a1 I x7 a7 I X3 a3

1
2

0.618 1.000 1.000 0.618

0.416 1.000 0.590 0.706 0.764 0.545 1 .ooo 0.416 3
0.484 1 .ooo 0.718 0.674 1 .ooo 0.484

TABLE I. Reduced level x, on the tree and corresponding scaling coefficient a , at the n-th level of nesting for the graph
coloring problem (k = 2) at ,O = P C . The variable N denotes the nesting depth, and a0 governs the scaling of the overall
quantum (or classical) algorithm.

14

APPENDIX A: ASYMPTOTIC PROBABILITY OF A NODE IN A SEARCH TREE TO BE GOOD

Let. 11s clrrive an approximate functional form for p (i) , the probability that a node at level i in the search tree is
“good”. The clerivatiou is complicated by the fact, that tile same problem instance can be easy or hard depending
011 t h e order in which the variables are assigned values. This is because i t is possible that the constraints are such
that a particular variable can only take one possible value. If this variable is exanlined early in the search process,
the recognition that the value is highly constrained would permit a large fraction of the search space t,o be avoided.
Conversely, if this variable is examined late in the search process, much of the tree might already have been developed,
resulting in relatively little gain. However, the algorithm described in Sec. I1 is a naive algorithm that does not optimize
the order in which the variables are assigned values. Thus, we can compute the probability p (i) for an average tree
having a random variable ordering.

The simplest way to do this is to consider a lattice of partial solutions rather than a tree of partial solutions, because
a lattice of partial solutions effectively encodes all possible variable orderings. In particular, the ith level of a lattice
of partial solutions represents all possible subsets of i variables out of p variables, assigned values in all possible
combinations. Thus, in a lattice there are (t) b i nodes at level i rather than the bi nodes in a tree. So each level of
the lattice encodes the information contained in (t) different trees. As each constraint involves exactly k variables,
and each variable can be assigned any one of its b allowed values, there are exactly bk “ground instances” of each
constraint. Moreover, as each constraint involves a different combination of k out of a possible p variables, there
can be at most (t) constraints. Each ground instance of a constraint may be “good” or “nogood”, so the number of
ground instances that are “nogood”, < , must be such that 0 5 < 5 bk (i). If < is small the problem typically has many
solutions. If < is large the problem typically has few, or perhaps no, solutions. The exact placement of the < nogoods
is, of course, important in determining the their ultimate pruning power.

Thus to estimate p (i) in an average tree, we calculate the corresponding probability that a node in the lattice (which
implicitly incorporates all trees) is “nogood”, conditional on there being < “nogoods” at level k . For a node at level
i of the lattice to be “good” it must not sit above any of the < nog good^" at level k . A node at level i of the lattice
sits above (i) nodes at level k . Thus, out of a total possible pool of 6“;) nodes at level k 7 we must exclude (i) of
them. However, we can pick the < nogoods from amongst the remaining nodes in any way whatsoever. Hence the
probability that a node is “good” at level i , given that there are < “nogoods” at level k , is given by the ratio of the
number of ways to pick the “nogoods” such that a particular node at level i is “good”, to the total number of ways
of picking the < “nogoods”. As a consequence, the probability for a partial solution to be good at level i in a tree of
height p and branching ratio b can be approximated as [17,18,20]

where k is the size of the constraint (i.e., number of variables involved in a constraint) and < is the number of “nogood”
ground instances (or number of constraints). This approximation essentially relies on the assumption that the partial
solutions at a given level are uncorrelated.

Now, we are interested in obtaining an asymptotic expression for p (i) for large problems, i.e., when the number of
variables p + co. Recall that to scale a constraint satisfaction problem up, however, it is not sufficient to increase
only p . In addition, we ought also to increase the number of constraints so as to preserve the “constrainedness-per-
variable”, p = < / p . Thus, when we consider scaling our problems up, as we must do to assess the asymptotic behavior
of the classical and quantum structured search algorithms, we have p + co and scale < = p p , keeping p , b and k
constant.6 We now make the assumption that << b k (i) and < << b k (i) - (i) , which is justified in the asymptotic
regime. Using Stirling formula, we have

6For graph coloring, this scaling assumption corresponds to adding more edges to the graph as we allow the number of nodes
to go to infinity, while simultaneously keeping the average connectivity (number of edges per node) and the number of colors
fixed.

(.42)

for large N and N , provided that Ii <(hd , N . This allows us to reexpress Eq. (til) as

Now, assuming that k << i and k << p , and reusing Eq. (A2), we have

p (i) = (1 - b-k (d) ‘) E

for large i and p . Finally, assuming for simplicity that bk >> 1 and (i / ~) ~ << 1, we obtain

p (i) = b -/l($)
where p = < / p measures the difficulty of the problem and PC = bk log(b) is the critical value around which the problem
is the most difficult.

APPENDIX B: AVERAGE-CASE COMPLEXITY OF THE CLASSICAL SEARCH

Plugging Eq. (A5) into Eq. (7), we obtain an approximate expression of the classical computation time needed to
solve an average instance with fixed p

where the denominator is simply the expected number of solutions. Let us now find the level i where it is optimum
to “cut” the tree. The value of i which minimizes Tc(i) corresponds, for large p , to the situation where both terms
in the numerator grow with the same power of 6, i.e., the solution of the equation i = p - ~ (p / p ,) (i / p) ~ . Then, one
can show that the computation time approximately scales as

where the scaling coefficient a = x with x = i / p , the fraction of the height at which one cuts the tree, being the
solution of Eq. (40) such that 0 5 I 5 1. For problems of maximum difficulty (p = P C) , i.e., problems which admit a
single solution on average, the classicai time scales thus as

for a search space of dimension d = bP. This represents a significant improvement over a classical search that does
not exploit the structure, i.e., T, - O(d) .

APPENDIX C: EXACT EXPRESSION FOR THE ITERATED SEARCH OPERATOR IN TERMS OF
CHEBYSHEV POLYNOMIALS

The unstructured quantum search algorithm is based on iterating n times the operator

= (-2u’ 1) 1 - 4142 2u

16

wllcre u E (t l U l . s) is a c-number (with IuI 5 1) . The iterated operator can be written exactly as

where U,(cosO) = sin((n+ l)O)/sin(O) is the Chebyshev polynomialof the second kind. By making use of Zio(x) = 1,
Ul(x) = 2 x , and U ~ (. C) = 4 x 2 - 1, it is easy to check that, for n = 1, Eq. (C2)

is indeed consistent with Eq. (C1). Now, using the recursion formula for Chebyshev polynomials,

Un+l (x) - 2 2 U n (~) + Un-l(z) = 0

we can verify easily that the product of Q and Q", as defined by Eq. (C2), yields Qn+'. Indeed,

- - Qn+l (C5)

We can use Eq. (C2) to calculate the exact amplitude of the target state It) after n iterations, that is

Equivalently, we can write

by using the recursion formula

where T,(cos 8) = cos(n8) is the Chebyshev polynomial of the first kind. Note that, at the limit of 1 ~ 1 << 1, it is easy
to show that T 2 n (l ~ I) N (-1)" cos(2n1u1) and U2n-l(lul) N -(-1)" sin(2nlu(), so that we obtain

(t1Q"Uls) E u cos(2nlul) + - sin(2nlul)
U

(C9) I 4
in agreement with Eq. (13). Thus, the second term in Eq. (C9) mainly contributes to the amplitude of the target
state It) at the limit of small IuI.

[l] P. W. Shor, Algorithms for quantum computation: Discrete logarithms and factoring, in Proc. 35th Annual Symposium on
Foundations of Computer Science, edited by S. Goldwasser, (IEEE Computer Society Press, New York, 1994), pp. 124-134.

[2] P. W. Shor, SIAM Journal on Computing, 26, 1484 (1997).
[3] L. K . Grover, A fas t quantum mechanical algorithm for database search, in: Proc. 28th Annual Symposium on the Theory

of Computing, (ACM Press, New York, 1996), pp. 212-219.

17

(.I] L. K. Grover, Quantum mechanic.r h e l p ~n .yearchirzgfor a rzeetlle i n (1 haystack, Phys. Rev. Lett. 70. 3?5 (1‘397’).
[5] E. Factli and S. Gutmann, Quar~tum computation and decision trees, Los-Alamos e-print quant-ph/WOFOGL’, to appear in

[6] T. Hogg, Highly structured searches with quantum computers, Phys. Rev. Lett. 80, 2473 (1998).
[7] M. R. Carey and D. S. Johnson, Computer.9 and Intractability: n guide to the theory of NP-cornpletene.ys, (W . H. Freeman,

San Francisco, 1979).
[8] A. Lenstra and H. Lenstra, The development of the Number Field Sieve, Lectures Notes in Mathematics 1554, (Springer

Verlag, New York, 1993).
[9] C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, Strengths and Weaknesses of Quantum Computing, SLAM

Journal on Computing 26, 1510 (1997). ; also in Los-Alamos e-print quant-ph/9701001.
[lo] M. Boyer, G. Brassard, P. Hoyer, and A. Tapp, Tight bounds on quantum searching, in: Proc. 4th Workshop on Physics

and Computation, edited by T. Toffoli, M. Biafore, and J . Leao, (New England Complex Systems Institute, Boston, 1996),
p. 36; also in Los-Alamos e-print quant-ph/9605034.

Phys. Rev. A (1938).

[Ill C. Zalka, Grover’s quantum searching algorithm is optimal, Los-Alamos e-print quant-ph/9711070.
[12] T. Hogg, A framework for structured quantum search, Los-Alamos e-print quant-ph/9701013, to appear in Physica D

[13] E. Farhi and S. Gutmann, Quantum mechanical square root speedup in a structured search problem, Los-Alamos e-print

[14] L. K. Grover, Quantum search on structured problems, Proc. 1st NASA Int. Conf. on Quantum Computing and Quantum

[15] L. K. Grover, Quantum computers can search rapidly by using almost any transformation, Phys. Rev. Lett. 80, 4329 (1998).
[16] P. Cheeseman, B. Kanefsky, and W. M. Taylor, Where the really hard problems are, in Proc. of International Joint

[17] C. P. Williams and T. Hogg, Using deep structure to locate hard problems, in Proc. loth National Conf. on Artificial

[18] C. P. Williams and T. Hogg, Extending deep structure, in Proc. 11th National Conf. OR Artificial Intelligence (AAAI’93),

[19] S. Kirkpatrick and B. Selman, Critical behavior in the satisfiability of random boolean expressions, Science 264, 1297

[20] C. P. Williams and T. Hogg, Expected Gains from Parallelizing Constraint Solving for Hard Problems, in Proc. 12th

[21] G. Brassard, P. Hoyer, and A. Tapp, Quantum counting, Los-Alamos e-print quant-ph/9805082.
[22] D. Biron, 0. Biham, E. Biham, M. Grassl, and D. A. Lidar, Generalized Grover search algorithm for arbitrary initial

(1998).

quant-~h/9711035.

Communications; also in Los-Alamos e-print puant-ph/9802035.

Conference on Artificial Intelligence (IJCAI’Sl), Sydney, (Morgan Kauffman, 1991), pp. 331-337.

Intelligence (AAAI’92), (AAAI Press, Menlo Park, CA, 1992), pp. 472-477.

(AAAI Press, Menlo Park, CA, 1993), pp. 152-157.

(1994).

National Cod. on Artificial Intelligence (AAAI’94), (AAAI Press, Menlo Park, CA, 1994), pp. 1310-1315.

amplitude distribution, Los-Alamos e-print quant-ph/9801066.

18

